

Welcome to ExpertOp4Grid’s documentation!

Starting kit

	Mentions
	Quick Overview

	Features

	Contribute

	Support

	License

	Installation
	1. (Optional)(Recommended) if you want to run in manual mode, install graphviz

	2. Install the package from Pypi

	3. (Optional) If you want to run simulation with pypownet instead of Grid2op:

	4. (Optional) Compile and output the sphinx doc (this documentation)

	Getting Started
	Manual Mode

	Agent Mode

	Tests

	Debug Help

Algorithms documentation

	Description
	Introduction

	Workflow overview

	Workflow implementation

	Outputs of the process

	Didactic example

	Important limitations

	AlphaDeesp algorithm details
	Call

	Inputs

	Outputs

	Simulating AlphaDeesp suggestions

	Last Note

Mentions

Quick Overview

This is an Expert System which tries to solve a security issue on a power grid, that is on overload over a power line, when it happens. It uses cheap but non-linear topological actions to do so, and does not require any training. For any new overloaded situations, it computes an influence graph around the overload of interest, and rank the substations and topologies to explore, to find a solution. It simulates the top ranked topologies to eventually give a score of success:

4 - it solves all overloads,
3 - it solves only the overload of interest
2 - it partially solves the overload of interest
1 - it solves the overload of interest but worsen other overloads
0 - it fails. The expert agent is based
It is an implementation of the paper: “Expert system for topological action discovery in smart grids” - https://hal.archives-ouvertes.fr/hal-01897931/file/_LARGE__bf_Expert_System_for_topological_remedial_action_discovery_in_smart_grids.pdf

[image: _images/g_over_grid2op_ltc9.PNG]
Influence Graph example for overloaded line 4->5. The electrical paths highlighted there will help us identify interesting topologies to reroute the flows.

Features

	Analyse a power network when a line is in overflow

	Run simulations to understand the network constraints

	Return a ranking of topological actions that would solve the overflow, or reduce it

	If ran manually (through command line), can also output a series of graph to help visualise the state of the network

Contribute

	Issue Tracker: https://github.com/marota/ExpertOp4Grid/issues

	Source Code: https://github.com/marota/ExpertOp4Grid

Support

If you are having issues, please let us know.
We have a discord located at: $discordlink

License

Copyright 2019-2020 RTE France

RTE: http://www.rte-france.com

This Source Code is subject to the terms of the Mozilla Public License (MPL) v2.

Installation

To install ExpertOp4Grid and AlphaDeesp execute the following lines:

1. (Optional)(Recommended) if you want to run in manual mode, install graphviz

This is for neato package, it allows to transform a dot file into a pdf file.

Warning: It is important to install graphviz executables before python packages

First install executable

	On Linux

apt-get install graphviz

	On Windows, use package finder (equivalent of apt-get on Windows)

winget install graphviz

Then ensure that graphviz and neato are in the path. You often have to set it manually. For example on windows you can use the following command line:

setx /M path "%path%;'C:\Users\username\graphviz-2.38\release\bin"

Then you can move to python packages installation

2. Install the package from Pypi

pip install ExpertOp4Grid

3. (Optional) If you want to run simulation with pypownet instead of Grid2op:

	Clone pypownet somewhere else :

cd ..
git clone https://github.com/MarvinLer/pypownet.git

	Install from within that folder:

python setup.py install --user

or

cd ExpertOp4Grid
pipenv shell
cd ../pypownet
python setup.py install

4. (Optional) Compile and output the sphinx doc (this documentation)

Run
./docs/make.bat html

Getting Started

Manual Mode

To execute in manual mode, type:
expertop4grid -l 9 -s 0 -c 0 -t 0

	–ltc | -l int
	Integer representing the line to cut.
For the moment, only one line to cut is handled

	–snapshot | -s int
	If 1, will generate plots of the different grid topologies
managed by alphadeesp and store it in alphadeesp/ressources/output

	–chronicscenario | -c string
	Name of the folder containing the chronic scenario to consider
By default, the first available folder will be chosen

	–timestep | -t int
	Integer representing the timestep number at
which we want to run alphadeesp simulation

	–fileconfig | -f string
	Path to .ini file that provides detailed configuration of the module. If none is provided, a default config.ini is provided in package

In any case, an end result dataframe is written in root folder.

If you run the same command with ‘-s 1’ to print the plots, you will indeed see that:

	On the intial state, you had an overflow to solve

[image: _images/g_pow_grid2op_ltc9.PNG]

	The expert system indeed finds a solution topology for it at substation 4

[image: _images/example_4_score_ltc9.PNG]
See Algorithm Description section to learn more about the workflow and results.

In manual mode, further configuration is made through alphadeesp/config.ini

	simulatorType - you can chose Grid2op or Pypownet

	gridPath - path to folder containing files representing the grid. If no value is provided, a default grid will be loaded (l2rpn_2019) containing one chronic as a simple usecase example

	outputPath - path to write outputs in case snapshot mode is activated. If no path is provided, ExpertOp4Grid will write image results in the current working directory (folder named output/grid/linetocut/scenario/timestep)

	CustomLayout - list of couples reprenting coordinates of grid nodes. If not provided, grid2op will load grid_layout.json in grid folder

	grid2opDifficulty - “0”, “1”, “2” or “competition”. Be careful: grid datasets should have a difficulty_levels.json

	7 other constants for alphadeesp computation can be set in config.ini, with comments within the file

Agent Mode

To execute in agent mode, please refer to ExpertAgent available in l2rpn-baseline repository

https://github.com/mjothy/l2rpn-baselines/tree/mj-devs/l2rpn_baselines/ExpertAgent

Instead of configuring through config.ini, you can pass a similar python dictionary to the API

Tests

To launch the test suite in git repo:
pipenv run python -m pytest --verbose --continue-on-collection-errors -p no:warnings

Debug Help

	To force specific hubs

in AlphaDeesp.compute_best_topo() function, one can force override the hubs result. Check in code, there are
commented examples.

	To force specific combinations for hubs

If one wants a specific hub, a user can “force” a specific node combination.
Check in the code, there are commented examples

Description

Introduction

This module represents an expert agent that finds solutions to optimize a power network. The expert agent is based
on a research paper (https://hal.archives-ouvertes.fr/hal-01897931/file/_LARGE__bf_Expert_System_for_topological_remedial_action_discovery_in_smart_grids.pdf)

Given a power grid and a line in overflow (referred as Line to cut) the expert agent will run simulations on the network
and try to find and rank the best topological actions (changing elements of the graph from one bus to the other) to hopefuly solve the overflow.

Workflow overview

We can decompose the Expert System algorithm along those successive steps. Based on the overload distribution graphs it builds, it tries to identify relevant patterns in it described by expert knowledge, to eventually find good spots to reroute the flows. It ranks those substations apriori by relevance and then test them by simulation to get a final score of sucess. Notice that 2 of those steps involves running simulations: it indeed relies on a simulator backend to work.

[image: _images/SchemaSystemeExpert.jpg]

Workflow implementation

The following picture shows an overview of the different inputs and outputs, and of the major modelisation steps.

[image: _images/workflow_overview.jpg]
Whether entering in manual mode or agent mode, different sets of inputs are provided.

Objects and steps in orange are specific to one given simulator. Two objects are manipulated as such

	ObservationLoader object

	Simulator object

See examples of implementation with Grid2op simulations and Pypownet simulations, in following scripts

	alphaDeesp/core/grid2op/Grid2opObservationLoader.py

	alphaDeesp/core/grid2op/Grid2opSimulation.py

	alphaDeesp/core/pypownet/PypownetObservationLoader.py

	alphaDeesp/core/pypownet/PypownetSimulation.py

It can be substituted by your favorite simulator if it provides the same interface methods and returns the same type of objects to be able to work with AlphaDeesp

Outputs of the process

When called, the main.py/expert_operator.py will return three objects :
ranked_combinations, expert_system_results, action

ranked_combinations

This dict contains all topological configurations per node, sorted from best to worst by the simulation.

expert_system_results

The main dataframe presenting quantitative information for all simulated topologies

[image: _images/end_result_dataframe_extract.jpg]

	Simulated flows on the target line (line to cut) before and after topological actions is operated. The delta flow is the difference between both of them

	Worsened lines: new lines that got overloaded or initially overloaded lines which overload increased

	Redispatched Prod: sum of all the production increase or decrease at each generator

	Redispatched Load: difference between the total demand and the actual power supply in all loads (production - losses)

	Internal Topology applied: topology list as used in AlphaDeesp. Represents the bus of each element at the substation (column Substation ID)

	Topology applied: topology list as used in the simulator. Represents the bus of each element at the substation (column Substation ID)

	Substation ID: ID of the substation on which the toology is applied

	Topology score: quantitative score returned by Alphadeesp for this topology

	Topology simulated score: integer score (from 0 to 4) given by the simulator when computing powerflow on the grid after applying the topology

	Efficacity: flexible quantitative score to be returned by the simulator. It can for instance take into account the reward after applying the topological action

In manual mode, if option –snapshot is set to 1, plots of all simulated topos graphs are generated to dig into their consequences on the grid powerflow distribution. Plot names are meant to facilitate links between the snapshot and its correspondign line in the dataframe. See plots in the following didactic example.

action

This list contains all actions (generated by and for the chosen backend) that represent the topological states chosen by Alphadeesp.
Sorted from best to worst, they are a syntactic sugar to give users a direct action to apply to their network.
It is still recommended to parse the main dataframe to understand better what solutions are available.

Didactic example

We launch the expert operator in manual mode on the grid l2rpn_2019, with the Grid2opSimulator, on scenario a, at first timestep. There is an overflow on line 9 (between substation 4 and 5), so we provide ltc = 9.
We want to see snapshots of the grid.

	Command line

pipenv run python -m alphaDeesp.main -l 9 -s 0 -c 0 -t 0

	Beginning of config.ini

[image: _images/config_l2rpn_2019.JPG]

	Layout of the grid in its current state (also called g_pow)

[image: _images/g_pow_grid2op_ltc9.PNG]
The simulator will then compute several objects to provide to AlphaDeesp, which will run a greedy algorithm to determine the best topological action to solve the overload.
For more details, see the section Algorithm Details

	AlphaDeesp will then output a dataframe will all computed details about the best topologies found.

[image: _images/dataframe_three_examples.jpg]

	The topology surrounded in green has got a 4 simulated score. We can see on the corresponding snapshot that it has resolved the overflow on line 9 by connected two lines to bus 1 at substation 4, which has divided the power flow in amount of line 9

[image: _images/example_4_score_ltc9.PNG]

	The topology surrounded in red has got a 0 simulated score. It does not resolve the power flow

[image: _images/example_0_score_ltc9.PNG]

	The topology surrounded in orange has got a 1 simulated score. It does resolved the power flow on line 9 but created an other one on an other line

[image: _images/example_1_score_ltc9.PNG]

Important limitations

	
	For the moment, we allow cutting only one line when launching the expert system:
	
	ex python3 -m alphaDeesp.main -l 9

	The algorithm will only take the given timestep into account, meaning it will not try to learn from past or future behavior

	Pypownet only Only works with initial state of all nodes with busbar == 0

	Pypownet only At the moment, in the internal computation, a substation can have only one source of Power and one source of Consumption

AlphaDeesp algorithm details

Call

Calling the alphaDeesp engine is done like so :

alphadeesp = AlphaDeesp(g_over, df_of_g, custom_layout, printer, simulator_data,sim.substation_in_cooldown, debug = debug)
ranked_combinations = alphadeesp.get_ranked_combinations()

Alphadeesp hence gives you an oredered list of substations and topologies that should be relevant to solve your overload

Inputs

The following inputs will be required to be computed by the Simulation override.

	
	g_over
	A newtorkx graph representation of the grid with flow values

	
	df_of_g
	A dataframe representing a detailed view of the graph

[image: _images/df_of_g_l9PNG.png]
[image: _images/g_pow_l9_df_of_g.png]
[image: _images/g_pow_prime_grid2op_ltc9.PNG]
[image: _images/g_over_df_l9.png]

	
	custom_layout
	The layout of the graph (list of (X,Y) coordinate for edges. Used for plotting.

	
	printer
	A printer service for logs and graphs

	
	simulator_data
	A dict composed of :

	
	substations_elements
	A local representation of the network from G_OVER (G_POW - G_POW_PRIME) using AlphaDeesp model objects from network.py

Each PRODUCTION or CONSUMPTION has the value of G_POW (the initial values)

Each ORIGINLINE or EXTREMITYLINE has the values of flow(G_POW) - flow(G_POW_PRIME)

	{
	
	0: [
	PRODUCTION Object ID: 1, busbar_id: 0, value: 233.4587860107422 ,

ORIGINLINE Object ID: 1, busbar_id: 0, connected to substation: 1, flow_value: [4.16] ,

ORIGINLINE Object ID: 2, busbar_id: 0, connected to substation: 4, flow_value: [-1.27]],

	1: [
	PRODUCTION Object ID: 2, busbar_id: 0, value: 40.0 ,

CONSUMPTION Object ID: 1, busbar_id: 0, value: 21.700000762939453 ,

ORIGINLINE Object ID: 3, busbar_id: 0, connected to substation: 2, flow_value: [2.48] ,

ORIGINLINE Object ID: 4, busbar_id: 0, connected to substation: 3, flow_value: [4.98] ,

ORIGINLINE Object ID: 5, busbar_id: 0, connected to substation: 4, flow_value: [-3.53] ,

EXTREMITYLINE Object ID: 1, busbar_id: 0, connected to substation: 0, flow_value: [4.16]],

	2: [
	PRODUCTION Object ID: 3, busbar_id: 0, value: 0.0 ,

CONSUMPTION Object ID: 2, busbar_id: 0, value: 94.19999694824219 ,

EXTREMITYLINE Object ID: 2, busbar_id: 0, connected to substation: 3, flow_value: [-2.31] ,

EXTREMITYLINE Object ID: 3, busbar_id: 0, connected to substation: 1, flow_value: [2.48]],

	3: [
	CONSUMPTION Object ID: 3, busbar_id: 0, value: 47.79999923706055 ,

EXTREMITYLINE Object ID: 4, busbar_id: 0, connected to substation: 4, flow_value: [35.49] ,

ORIGINLINE Object ID: 6, busbar_id: 0, connected to substation: 6, flow_value: [27.17] ,

ORIGINLINE Object ID: 7, busbar_id: 0, connected to substation: 8, flow_value: [15.38] ,

EXTREMITYLINE Object ID: 5, busbar_id: 0, connected to substation: 1, flow_value: [4.98] ,

ORIGINLINE Object ID: 8, busbar_id: 0, connected to substation: 2, flow_value: [-2.31]],

	4: [
	CONSUMPTION Object ID: 4, busbar_id: 0, value: 7.599999904632568 ,

ORIGINLINE Object ID: 9, busbar_id: 0, connected to substation: 5, flow_value: [-40.77] ,

EXTREMITYLINE Object ID: 6, busbar_id: 0, connected to substation: 0, flow_value: [-1.27] ,

EXTREMITYLINE Object ID: 7, busbar_id: 0, connected to substation: 1, flow_value: [-3.53] ,

ORIGINLINE Object ID: 10, busbar_id: 0, connected to substation: 3, flow_value: [35.49]],

	5: [
	PRODUCTION Object ID: 4, busbar_id: 0, value: 0.0 ,

CONSUMPTION Object ID: 5, busbar_id: 0, value: 11.199999809265137 ,

ORIGINLINE Object ID: 11, busbar_id: 0, connected to substation: 12, flow_value: [-12.76] ,

ORIGINLINE Object ID: 12, busbar_id: 0, connected to substation: 11, flow_value: [-2.99] ,

EXTREMITYLINE Object ID: 8, busbar_id: 0, connected to substation: 10, flow_value: [25.01] ,

EXTREMITYLINE Object ID: 9, busbar_id: 0, connected to substation: 4, flow_value: [-40.77]],

	6: [
	EXTREMITYLINE Object ID: 10, busbar_id: 0, connected to substation: 7, flow_value: [0.0] ,

ORIGINLINE Object ID: 13, busbar_id: 0, connected to substation: 8, flow_value: [27.17] ,

EXTREMITYLINE Object ID: 11, busbar_id: 0, connected to substation: 3, flow_value: [27.17]],

	7: [
	PRODUCTION Object ID: 5, busbar_id: 0, value: 0.0 ,

ORIGINLINE Object ID: 14, busbar_id: 0, connected to substation: 6, flow_value: [0.0]],

	8: [
	CONSUMPTION Object ID: 6, busbar_id: 0, value: 29.5 ,

ORIGINLINE Object ID: 15, busbar_id: 0, connected to substation: 13, flow_value: [16.49] ,

ORIGINLINE Object ID: 16, busbar_id: 0, connected to substation: 9, flow_value: [26.06] ,

EXTREMITYLINE Object ID: 12, busbar_id: 0, connected to substation: 3, flow_value: [15.38] ,

EXTREMITYLINE Object ID: 13, busbar_id: 0, connected to substation: 6, flow_value: [27.17]],

	9: [
	CONSUMPTION Object ID: 7, busbar_id: 0, value: 9.0 ,

ORIGINLINE Object ID: 17, busbar_id: 0, connected to substation: 10, flow_value: [25.79] ,

EXTREMITYLINE Object ID: 14, busbar_id: 0, connected to substation: 8, flow_value: [26.06]],

	10: [
	CONSUMPTION Object ID: 8, busbar_id: 0, value: 3.5 ,

ORIGINLINE Object ID: 18, busbar_id: 0, connected to substation: 5, flow_value: [25.01] ,

EXTREMITYLINE Object ID: 15, busbar_id: 0, connected to substation: 9, flow_value: [25.79]],

	11: [
	CONSUMPTION Object ID: 9, busbar_id: 0, value: 6.099999904632568 ,

EXTREMITYLINE Object ID: 16, busbar_id: 0, connected to substation: 12, flow_value: [2.96] ,

EXTREMITYLINE Object ID: 17, busbar_id: 0, connected to substation: 5, flow_value: [-2.99]],

	12: [
	CONSUMPTION Object ID: 10, busbar_id: 0, value: 13.5 ,

EXTREMITYLINE Object ID: 18, busbar_id: 0, connected to substation: 13, flow_value: [15.6] ,

EXTREMITYLINE Object ID: 19, busbar_id: 0, connected to substation: 5, flow_value: [-12.76] ,

ORIGINLINE Object ID: 19, busbar_id: 0, connected to substation: 11, flow_value: [2.96]],

	13: [
	CONSUMPTION Object ID: 11, busbar_id: 0, value: 14.899999618530273 ,

EXTREMITYLINE Object ID: 20, busbar_id: 0, connected to substation: 8, flow_value: [16.49] ,

ORIGINLINE Object ID: 20, busbar_id: 0, connected to substation: 12, flow_value: [15.6]]

}

	substation_to_node_mapping

	
	internal_to_external_mapping
	A dict linking the substation ids from substations_elements (internal) to the observation substations (external)

[image: _images/internal_to_external_mapping_explanation_console.png]

	
	substation_in_cooldown
	List of substation that are in cooldown

	
	debug
	Boolean flag for debugging purposes

Outputs

The alphaDeesp object then provides a list : ranked_combinations

This is a list of dataframes with the following columns :

	
	score
	the score of the topology from 0(worst) to 4(best)

	
	topology
	An array of integers (bus_ids) showing the topology of a node

	
	node
	The node on which the topology was applied

Simulating AlphaDeesp suggestions

This ranked_combinations list is then used to simulate all topologies with the Simulation override :
expert_system_results, actions = sim.compute_new_network_changes(ranked_combinations)

You eventually know which selected topologies are indeed successful.

Last Note

AlphaDeesp substation and topology rankings could be improved to make the selection of actions always more relevant and efficient.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to ExpertOp4Grid’s documentation!

 		
 Mentions

 		
 Quick Overview

 		
 Features

 		
 Contribute

 		
 Support

 		
 License

 		
 Installation

 		
 1. (Optional)(Recommended) if you want to run in manual mode, install graphviz

 		
 2. Install the package from Pypi

 		
 3. (Optional) If you want to run simulation with pypownet instead of Grid2op:

 		
 4. (Optional) Compile and output the sphinx doc (this documentation)

 		
 Getting Started

 		
 Manual Mode

 		
 Agent Mode

 		
 Tests

 		
 Debug Help

 		
 Description

 		
 Introduction

 		
 Workflow overview

 		
 Workflow implementation

 		
 Outputs of the process

 		
 ranked_combinations

 		
 expert_system_results

 		
 action

 		
 Didactic example

 		
 Important limitations

 		
 AlphaDeesp algorithm details

 		
 Call

 		
 Inputs

 		
 Outputs

 		
 Simulating AlphaDeesp suggestions

 		
 Last Note

_images/g_pow_l9_df_of_g.png
13.50 MW

01/01 00:05
—— powerline
— substation
s l0ad
= generator
G—POW —e— no bus
—
(before cut) -

Column init_flows

bus 1
bus 2

1120 W

0.00 MW
2077MW

1716 MW

75.62MW

6325 MW

233.46 MWD

5530 MW

157.84 MW

76.30 MW

_images/internal_to_external_mapping_explanation_console.png
substation_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 11, 12, 13, 14
internal to external mapping

{o: 1,
1: 2,
2: 3,
3: 4,
4: s,
5: 6,

7,

8,
8: 9,
9: 10
10: 11
1: 12,
12: 13,
13: 14}

external to internal mapping

{1: o,
2: 1,

2,

3

4,

5,

6,

7,

8,
9,
10,
11,
12,

13}

_images/end_result_dataframe_extract.jpg
overflow ID Flows before Flows after Delta flows Worsened lin¢ Prod redispat« Load redispat Internal Topo Topology app Substation ID Rank Substati: Topology scot Topology simi Efficacity

090 40.768272309¢-7.599999904 48.36827087- [6] 4.17234802240.0 00111 (2,2,2,1,1] 40 10 40.29 10 249.5369873046875
190 40.76827230¢ 48.56959533¢ 7.801322937 [9] 0.83224487300.0 00011 [1,2,2,1,1] 40 10 39.02 00 -6.4611897468566895
290 40.76827239¢ 38.61765289: 2.150619506¢ [} 0.011703491:0.0 00101 [2,1,2,1,1] 40 10 3676 40 2.2398364543914795
390 40.76827230¢ 51.023971553-10.25569915 [9] 1.266403198:0.0 01100 (2,1,1,2,1] 40 10 3142 00 -8.08720874786377
49.0 40.76827239¢40.5486221310.219650268¢ (] 0.128341674¢0.0 [01010] [1,2,1,2,1] 40 1.0 29.16 20 0.2179497927427292
590 40.76827239¢58.26204299¢ 17.49377059[2,3,0] 3.677261352:0.0 ©01110) (2,2,1,2,1] 40 10 27.89 00 -12.063469886779785
690 40.76827239¢ 35.20425033:¢5.564022064: [2, 3] 12.35440063¢3.051757812¢[00110] [2,2,1,1,1] 4.0 10 a8 10 6.346175193786621
790 40.76827239¢ 35.5310478215.237224578¢ [2, 3] 10.6989440913.051757812: (01001 [1,1,2,2,1] 4.0 10 28 10 5.9204657707214355
890 40.768272309¢ 39.7390136711.029258728K [} 0.482406616:0.0 01101 (2,1,2,2,1] 40 10 407 40 1.032004952430725
990 40.76827239¢39.09950411€ 1668678283 [2] 6.288818359:0.0 01011 (1,2,2,21] 40 10 633 10 1.7099021673202515

1090 40.768272309¢2.886579864 40.76827239¢ [6] 4.38040161153.051757812£(011110] [1,2,2,2,1,25.0 10 5196 10 227.79396057128906

1190 40.76827239¢ 26.34083175¢ 14.427440 2.823684692:0.0 011010 [1,2,1,2,1,250 10 4897 40 21.288515090942383

1290 40.76827239¢ 26,31589317: 14.45237922¢) 2.134414672¢0.0 000101 [2,1,2,1,1,150 10 4897 40 22.668455123901367

13 9.0 40.76827239¢ 11.19999980¢ 29.56827163¢ [6] 1.916412353£3.051757812¢(001110] [1,2,2,2,1,15.0 1.0 40.76 10 85.57772064208984

1490 40.76827239¢ 11.19999980¢ 29.56827163¢ (6] 1.508529663(0.0 010001 [2,1,1,3,1,250 10 2076 10 85.72057611083084

1500 40.76827239¢ 33.15359497(7.6146774291 [} 1.147979736:0.0 001001 [2,2,1,1,1,150 10 392 4.0 9.455564498901367

16 9.0 40.76827239¢ 33.20746231(7.5608100891 [] 1.556594848¢0.0 (010110] [1,1,2,2,1,250 10 39.2 4.0 8.970056533813477

1790 40.76827239¢ 30.30297851¢ 10.46529388+ 1.000579833¢3.051757812:[010101] [2,1,2,1,1,25.0 10 3777 40 13.942099839782715

189.0 40.76827239¢ 3053277587 10.23549652([] 1.159561157:0.0 (001010] [1,2,1,2,1,150 10 37.77 2.0 13.114050448242188

1990 40.76827239¢ 30.41880989¢ 10.34946250¢ 0.856185913(0.0 001101 [2,2,2,1,1,150 10 3621 40 13.747495651245117

2090 40.76827239¢ 32.24527359(8.522998809 [| 2.054061889¢0.0 0011 (221,1 120 10 201 40 10.400897026062012

2190 40.76827239¢ 42.20376968:-1.435497283 [) 0.972579956(0.0 0110] 121,21 120 10 1646 00 -1.3525135517120361

2290 40.76827239¢ 40.05780029% 0.710472106¢ [] 0.038024902:0.0 0101 (12,21 120 10 156 20 0.7036463022232056

_images/g_over_df_l9.png
G_OVER .m

Column delta_flows

Az

2n

a5 98

‘ * .

_static/file.png

_images/workflow_overview.jpg
Entering in manual mode, inputs: ! i Entering in agent mode, inputs: : INPUTS
i+ Command line (chronic scenario, timestep, line i+ Simulator object: sim
: to cut, snapshot mode) 1 Configuration dict (reproducing config.ini H
1+ alphaDeesp/config.ini 1 : options) :
i * Files representing the grid 1 : :
: (alphaDeesp/ressources/parameters/) ' 5 '
___ i =
o
i
[|
i ‘ Legend
midirizpy:: = Observation * ObservationLoader X |« Objects and steps in orange are
(manual) loading * Simulator : | specific to one given simulator
a0
B Simulator.get_dataframe() * Objects and steps in blue are
« Simulator.build_graph_from_data_frame() generic and can be connected to
Sirnulen s power grid . S!mulator. bu|Id_powx?rflow_graph_beforecut()—aftercut() any simulator if providing the
ith Aol t * Simulator.get_substation_elements() same type oF objects
with and without line cu * Simulator. get_substation_to_node_mapping()

* Simulator. get_internal_to_external_mapping()
* Simulator.isAntenna() — Simulator.isDoubleLine()

Ranking of substations, and * Alphadeesp()
expert_operatorpy | topologies within substations * Alphadeesp.get_ranked_combinations()

OUTPUTS

(agent and manual)

ity ataFrame with scoring of all topologies
Simulation and scoring of e erialized in END_RESULT_DATAFRAME.csv

. * Simulator.compute_new_network_changes
best topologies pUte_new_| _changes()

napshots of all topologies
* Simulator.load() il

: . i--,7 i Serialized in
« Simulator.plot_grid_beforecut() — aftercut() — delta() ' alphiaDeesplEaibrErinetoeuisfehs
 Simulator.plot_grid_from_obs() H

onic>/<timestep>
* Printer.display_geo() M oaal /_ ___________ p _____________________________________ -

Plot snapshots of topologies

_static/minus.png

_static/plus.png

_images/SchemaSystemeExpert.jpg
Start with

Overloaded
situation

Compute Line Outage
Distribution Factor of
overloaded lines

Build Overload
Distribution Graph

Identify Local Electrical
Paths

Identify Substation Type

Rank substations

Rank Topologies
within substations

Compute Load Flow
under selected topology

Action scoring
from1to S

FORA T

Up to 20 Topologies

_images/dataframe_three_examples.jpg
overflow ID Flows before Flows after Delta flows Worsened line Prod redispatt Load redispat Internal Topo Topology app Substation ID Rank Substati Topology scot Topology simi Efficacity

09.0 40.76827239¢-7.599999904 48.36827087< [6] 4.17234802240.0 [00111] 2,2,2,1,1] [4.0 1.0 40.29 1.0 249.5369873046875
19.0 40.76827239¢ 48.56959533¢-7.801322937 [9] 0.832244873(0.0 [00011] [1,2,2,1,1] 4.0 1.0 39.02 0.0 -6.4611897468566895
29.0 40.76827239¢ 38.61765289: 2.150619506¢ [] 0.01170349120.0 [00101] [2,1,2,1,1] 4.0 1.0 36.76 4.0 2.2398364543914795
39.0 40.76827239¢51.023971557-10.25569915 [9] 1.26640319820.0 [01100] [2,1,1,2,1] |40 1.0 31.42 0.0 -8.08720874786377
4 9.0 40.76827239¢40.5486221310.219650268% [] 0.128341674¢0.0 [01010] [1,2,1,2,1] 40 1.0 29.16 2.0 0.2179497927427292
59.0 40.76827239¢ 58.26204299¢ -17.49377059 (2, 3, 9] 3.677261352:0.0 [01110] [2,2,1,2,1] 4.0 1.0 27.89 0.0 -12.063469886779785
6 9.0 40.76827239¢ 35.20425033¢ 5.564022064% [2, 3] 12.3544006343.0517578125[001 1 0] [2,2,1,1,1] 4.0 1.0 4.8 1.0 6.346175193786621
79.0 40.76827239¢35.5310478215.237224578¢ (2, 3] 10.6989440913.0517578125[0100 1] [1,1,2,2,1] 4.0 1.0 -2.8 1.0 5.9294657707214355
89.0 40.76827239¢39.7390136711.029258728([] 0.48240661620.0 [01101] [2,1,2,2,1] 4.0 1.0 -4.07 4.0 1.032004952430725
9 9.0 40.76827239¢39.09959411¢€ 1.668678283¢ [2] 6.288818359:0.0 [01011] [1,2,2,2,1] 4.0 1.0 -6.33 1.0 1.7099021673202515
10 9.0 40.76827239¢-2.886579864 40.76827239¢ 6] 4.380401611:3.0517578125[011110] [1,2,2,2,1,25.0 1.0 51.96 1.0 227.79396057128906
11 9.0 40.76827239¢ 26.34083175¢€ 14.42744064: [] 2.823684692:0.0 [011010] [1,2,1,2,1,25.0 1.0 48.97 4.0 21.288515090942383
12 9.0 40.76827239¢€26.31589317: 14.45237922¢ [] 2.134414672¢0.0 [00o0101] [2,1,2,1,1,15.0 1.0 48.97 4.0 22.668455123901367
13 9.0 40.76827239¢ 11.19999980¢ 29.56827163¢€ [6] 1.91641235353.0517578125[001110] [1,2,2,2,1,15.0 1.0 40.76 1.0 85.57772064208984
14 9.0 40.76827239¢ 11.19999980¢ 29.56827163¢ [6] 1.508529663(0.0 [010001] [2,1,1,1,1,25.0 1.0 40.76 1.0 88.72957611083984
15 9.0 40.76827239¢33.15359497(7.6146774291[] 1.14797973620.0 [001001] [2,2,1,1,1,15.0 1.0 39.2 4.0 9.455564498901367
16 9.0 40.76827239¢ 33.20746231(7.5608100891[] 1.556594848¢0.0 [010110] [1,1,2,2,1,25.0 1.0 39.2 4.0 8.970056533813477
17 9.0 40.76827239¢30.30297851¢ 10.46529388¢[] 1.000579833¢3.0517578125[010101] [2,1,2,1,1,25.0 1.0 37.77 4.0 13.942999839782715
18 9.0 40.76827239¢30.53277587¢ 10.23549652([] 1.15956115720.0 [001010] [1,2,1,2,1,15.0 1.0 37.77 4.0 13.114059448242188
19 9.0 40.76827239¢ 30.41880989(10.34946250¢ [] 0.856185913(0.0 [001101] [2,2,2,1,1,15.0 1.0 36.21 4.0 13.747495651245117
20 9.0 40.76827239¢32.24527359(8.522998809¢ [] 2.054061889¢ 0.0 [0011] i2,2,1;3] 12.0 1.0 29.1 4.0 10.400897026062012
21 9.0 40.76827239€42.20376968: -1.435497283 [] 0.972579956(0.0 [0110] 12;1,2;1) 12.0 1.0 16.46 0.0 -1.3525135517120361

229.0 40.76827239¢40.057800292 0.710472106¢ [] 0.038024902:0.0 [0101] 1352;2;11 12.0 1.0 15.6 2.0 0.7036463022232056

_images/df_of_g_l9PNG.png
idx_or |idx_ex lows |swapped| new_flows | new_flows_swapped | delta_flows |gray_edges
FAUX 161,994385 FAUX 4,157547 VRAI

0 1

0 4 756219482 FAUX 74,3562241 FAUX -1,26572418 VRAI
1 2 76,3034973 FAUX 78,7802505 FAUX 2,47675323 VRAI
1 3 552951241 FAUX = 60,2714195 FAUX 497629547 VRAI
1 4 40,1874847 FAUX 36,6566048 FAUX -3,53087997 VRAI
3 2 206767883 VRAI 183699017 FAUX -2,30688667 VRAI
4 3 63,2531548 VRAI 98,7436676 FAUX 35,4905128 FAUX
3 6 30,4084244 FAUX 57,5757179 FAUX 27,1672935 FAUX
3 8 17,162178 FAUX = 32,5445709 FAUX 15,3823929 FAUX
4 5 40,7682724 FAUX 0 FAUX -40,7682724 FAUX
5 12 16,6833191 FAUX 391919923 FAUX -12,7641199 FAUX
5 11 7,35607958 FAUX 4,36635447 FAUX -2,98972511 VRAI
10 5 552887249 FAUX -19,4855537 VRAI 25,0144262 FAUX
7 6 0 FAUX -1,7764E-14 VRAI 1,7764E-14 VRAI
6 8 30,4084244 FAUX 57,5757179 FAUX 27,1672935 FAUX
8 13 109850082 FAUX 27,4706421 FAUX 16,4856339 FAUX
8 9 7,08559322 FAUX 33,1496468 FAUX 26,0640535 FAUX
9 10 1,96642911 VRAI -23,8234444 VRAI 25,7898735 FAUX
12 11 1,18748784 FAUX -1,77053511 VRAI 2,95802295 VRAI

13 12 4,17812109 FAUX -11,42062 VRAI 15,5987411 FAUX

