

    
      
          
            
  
Welcome to ExpertOp4Grid’s documentation!


Starting kit


	Mentions
	Quick Overview

	Features

	Contribute

	Support

	License





	Installation
	1. (Optional)(Recommended) if you want to run in manual mode, install graphviz

	2. Install the package from Pypi

	3. (Optional) If you want to run simulation with pypownet instead of Grid2op:

	4. (Optional) Compile and output the sphinx doc (this documentation)





	Getting Started
	Manual Mode

	Agent Mode

	Tests

	Debug Help










Algorithms documentation


	Description
	Introduction

	Workflow overview

	Workflow implementation

	Outputs of the process

	Didactic example

	Important limitations





	AlphaDeesp algorithm details
	Call

	Inputs

	Outputs

	Simulating AlphaDeesp suggestions

	Last Note












            

          

      

      

    

  

    
      
          
            
  
Mentions


Quick Overview

This is an Expert System which tries to solve a security issue on a power grid, that is on overload over a power line, when it happens. It uses cheap but non-linear topological actions to do so, and does not require any training. For any new overloaded situations, it computes an influence graph around the overload of interest, and rank the substations and topologies to explore, to find a solution. It simulates the top ranked topologies to eventually give a score of success:

4 - it solves all overloads,
3 - it solves only the overload of interest
2 - it partially solves the overload of interest
1 - it solves the overload of interest but worsen other overloads
0 - it fails. The expert agent is based
It is an implementation of the paper: “Expert system for topological action discovery in smart grids” - https://hal.archives-ouvertes.fr/hal-01897931/file/_LARGE__bf_Expert_System_for_topological_remedial_action_discovery_in_smart_grids.pdf

[image: _images/g_over_grid2op_ltc9.PNG]
Influence Graph example for overloaded line 4->5. The electrical paths highlighted there will help us identify interesting topologies to reroute the flows.



Features


	Analyse a power network when a line is in overflow


	Run simulations to understand the network constraints


	Return a ranking of topological actions that would solve the overflow, or reduce it


	If ran manually (through command line), can also output a series of graph to help visualise the state of the network






Contribute


	Issue Tracker: https://github.com/marota/ExpertOp4Grid/issues


	Source Code: https://github.com/marota/ExpertOp4Grid






Support

If you are having issues, please let us know.
We have a discord located at: $discordlink



License

Copyright 2019-2020 RTE France


RTE: http://www.rte-france.com




This Source Code is subject to the terms of the Mozilla Public License (MPL) v2.





            

          

      

      

    

  

    
      
          
            
  
Installation

To install ExpertOp4Grid and AlphaDeesp execute the following lines:


1. (Optional)(Recommended) if you want to run in manual mode, install graphviz

This is for neato package, it allows to transform a dot file into a pdf file.

Warning: It is important to install graphviz executables before python packages

First install executable


	On Linux




apt-get install graphviz


	On Windows, use package finder (equivalent of apt-get on Windows)




winget install graphviz

Then ensure that graphviz and neato are in the path. You often have to set it manually. For example on windows you can use the following command line:

setx /M path "%path%;'C:\Users\username\graphviz-2.38\release\bin"

Then you can move to python packages installation



2. Install the package from Pypi

pip install ExpertOp4Grid



3. (Optional) If you want to run simulation with pypownet instead of Grid2op:


	Clone pypownet somewhere else :




cd ..
git clone https://github.com/MarvinLer/pypownet.git


	Install from within that folder:




python setup.py install --user

or

cd ExpertOp4Grid
pipenv shell
cd ../pypownet
python setup.py install



4. (Optional) Compile and output the sphinx doc (this documentation)

Run
./docs/make.bat html





            

          

      

      

    

  

    
      
          
            
  
Getting Started


Manual Mode

To execute in manual mode, type:
expertop4grid -l 9 -s 0 -c 0 -t 0


	–ltc | -l int
	Integer representing the line to cut.
For the moment, only one line to cut is handled



	–snapshot | -s int
	If 1, will generate plots of the different grid topologies
managed by alphadeesp and store it in alphadeesp/ressources/output



	–chronicscenario | -c string
	Name of the folder containing the chronic scenario to consider
By default, the first available folder will be chosen



	–timestep | -t int
	Integer representing the timestep number at
which we want to run alphadeesp simulation



	–fileconfig | -f string
	Path to .ini file that provides detailed configuration of the module. If none is provided, a default config.ini is provided in package





In any case, an end result dataframe is written in root folder.

If you run the same command with ‘-s 1’ to print the plots, you will indeed see that:


	On the intial state, you had an overflow to solve




[image: _images/g_pow_grid2op_ltc9.PNG]

	The expert system indeed finds a solution topology for it at substation 4




[image: _images/example_4_score_ltc9.PNG]
See Algorithm Description section to learn more about the workflow and results.

In manual mode, further configuration is made through alphadeesp/config.ini


	simulatorType - you can chose Grid2op or Pypownet


	gridPath - path to folder containing files representing the grid. If no value is provided, a default grid will be loaded (l2rpn_2019) containing one chronic as a simple usecase example


	outputPath - path to write outputs in case snapshot mode is activated. If no path is provided, ExpertOp4Grid will write image results in the current working directory (folder named output/grid/linetocut/scenario/timestep)


	CustomLayout - list of couples reprenting coordinates of grid nodes. If not provided, grid2op will load grid_layout.json in grid folder


	grid2opDifficulty - “0”, “1”, “2” or “competition”. Be careful: grid datasets should have a difficulty_levels.json


	7 other constants for alphadeesp computation can be set in config.ini, with comments within the file






Agent Mode

To execute in agent mode, please refer to ExpertAgent available in l2rpn-baseline repository

https://github.com/mjothy/l2rpn-baselines/tree/mj-devs/l2rpn_baselines/ExpertAgent

Instead of configuring through config.ini, you can pass a similar python dictionary to the API



Tests

To launch the test suite in git repo:
pipenv run python -m pytest --verbose --continue-on-collection-errors -p no:warnings



Debug Help


	To force specific hubs




in AlphaDeesp.compute_best_topo() function, one can force override the hubs result. Check in code, there are
commented examples.


	To force specific combinations for hubs




If one wants a specific hub, a user can “force” a specific node combination.
Check in the code, there are commented examples





            

          

      

      

    

  

    
      
          
            
  
Description


Introduction

This module represents an expert agent that finds solutions to optimize a power network. The expert agent is based
on a research paper (https://hal.archives-ouvertes.fr/hal-01897931/file/_LARGE__bf_Expert_System_for_topological_remedial_action_discovery_in_smart_grids.pdf)

Given a power grid and a line in overflow (referred as Line to cut) the expert agent will run simulations on the network
and try to find and rank the best topological actions (changing elements of the graph from one bus to the other) to hopefuly solve the overflow.



Workflow overview

We can decompose the Expert System algorithm along those successive steps. Based on the overload distribution graphs it builds, it tries to identify relevant patterns in it described by expert knowledge, to eventually find good spots to reroute the flows. It ranks those substations apriori by relevance and then test them by simulation to get a final score of sucess. Notice that 2 of those steps involves running simulations: it indeed relies on a simulator backend to work.

[image: _images/SchemaSystemeExpert.jpg]


Workflow implementation

The following picture shows an overview of the different inputs and outputs, and of the major modelisation steps.

[image: _images/workflow_overview.jpg]
Whether entering in manual mode or agent mode, different sets of inputs are provided.

Objects and steps in orange are specific to one given simulator. Two objects are manipulated as such


	ObservationLoader object


	Simulator object




See examples of implementation with Grid2op simulations and Pypownet simulations, in following scripts


	alphaDeesp/core/grid2op/Grid2opObservationLoader.py


	alphaDeesp/core/grid2op/Grid2opSimulation.py


	alphaDeesp/core/pypownet/PypownetObservationLoader.py


	alphaDeesp/core/pypownet/PypownetSimulation.py




It can be substituted by your favorite simulator if it provides the same interface methods and returns the same type of objects to be able to work with AlphaDeesp



Outputs of the process

When called, the main.py/expert_operator.py will return three objects :
ranked_combinations, expert_system_results, action


ranked_combinations

This dict contains all topological configurations per node, sorted from best to worst by the simulation.



expert_system_results

The main dataframe presenting quantitative information for all simulated topologies

[image: _images/end_result_dataframe_extract.jpg]

	Simulated flows on the target line (line to cut) before and after topological actions is operated. The delta flow is the difference between both of them


	Worsened lines: new lines that got overloaded or initially overloaded lines which overload increased


	Redispatched Prod: sum of all the production increase or decrease at each generator


	Redispatched Load: difference between the total demand and the actual power supply in all loads (production - losses)


	Internal Topology applied: topology list as used in AlphaDeesp. Represents the bus of each element at the substation (column Substation ID)


	Topology applied: topology list as used in the simulator. Represents the bus of each element at the substation (column Substation ID)


	Substation ID: ID of the substation on which the toology is applied


	Topology score: quantitative score returned by Alphadeesp for this topology


	Topology simulated score: integer score (from 0 to 4) given by the simulator when computing powerflow on the grid after applying the topology


	Efficacity: flexible quantitative score to be returned by the simulator. It can for instance take into account the reward after applying the topological action




In manual mode, if option –snapshot is set to 1, plots of all simulated topos graphs are generated to dig into their consequences on the grid powerflow distribution. Plot names are meant to facilitate links between the snapshot and its correspondign line in the dataframe. See plots in the following didactic example.



action

This list contains all actions (generated by and for the chosen backend) that represent the topological states chosen by Alphadeesp.
Sorted from best to worst, they are a syntactic sugar to give users a direct action to apply to their network.
It is still recommended to parse the main dataframe to understand better what solutions are available.




Didactic example

We launch the expert operator in manual mode on the grid l2rpn_2019, with the Grid2opSimulator, on scenario a, at first timestep. There is an overflow on line 9 (between substation 4 and 5), so we provide ltc = 9.
We want to see snapshots of the grid.


	Command line




pipenv run python -m alphaDeesp.main -l 9 -s 0 -c 0 -t 0


	Beginning of config.ini




[image: _images/config_l2rpn_2019.JPG]

	Layout of the grid in its current state (also called g_pow)




[image: _images/g_pow_grid2op_ltc9.PNG]
The simulator will then compute several objects to provide to AlphaDeesp, which will run a greedy algorithm to determine the best topological action to solve the overload.
For more details, see the section Algorithm Details


	AlphaDeesp will then output a dataframe will all computed details about the best topologies found.




[image: _images/dataframe_three_examples.jpg]

	The topology surrounded in green has got a 4 simulated score. We can see on the corresponding snapshot that it has resolved the overflow on line 9 by connected two lines to bus 1 at substation 4, which has divided the power flow in amount of line 9




[image: _images/example_4_score_ltc9.PNG]

	The topology surrounded in red has got a 0 simulated score. It does not resolve the power flow




[image: _images/example_0_score_ltc9.PNG]

	The topology surrounded in orange has got a 1 simulated score. It does resolved the power flow on line 9 but created an other one on an other line




[image: _images/example_1_score_ltc9.PNG]


Important limitations


	
	For the moment, we allow cutting only one line when launching the expert system:
	
	ex python3 -m alphaDeesp.main -l 9










	The algorithm will only take the given timestep into account, meaning it will not try to learn from past or future behavior


	Pypownet only Only works with initial state of all nodes with busbar == 0


	Pypownet only At the moment, in the internal computation, a substation can have only one source of Power and one source of Consumption








            

          

      

      

    

  

    
      
          
            
  
AlphaDeesp algorithm details


Call

Calling the alphaDeesp engine is done like so :

alphadeesp = AlphaDeesp(g_over, df_of_g, custom_layout, printer, simulator_data,sim.substation_in_cooldown, debug = debug)
ranked_combinations = alphadeesp.get_ranked_combinations()

Alphadeesp hence gives you an oredered list of substations and topologies that should be relevant to solve your overload



Inputs

The following inputs will be required to be computed by the Simulation override.


	
	g_over
	A newtorkx graph representation of the grid with flow values







	
	df_of_g
	A dataframe representing a detailed view of the graph









[image: _images/df_of_g_l9PNG.png]
[image: _images/g_pow_l9_df_of_g.png]
[image: _images/g_pow_prime_grid2op_ltc9.PNG]
[image: _images/g_over_df_l9.png]

	
	custom_layout
	The layout of the graph (list of (X,Y) coordinate for edges. Used for plotting.







	
	printer
	A printer service for logs and graphs







	
	simulator_data
	A dict composed of :


	
	substations_elements
	A local representation of the network from G_OVER (G_POW - G_POW_PRIME) using AlphaDeesp model objects from network.py

Each PRODUCTION or CONSUMPTION has the value of G_POW (the initial values)

Each ORIGINLINE or EXTREMITYLINE has the values of flow(G_POW) - flow(G_POW_PRIME)



	{
	
	0: [
	PRODUCTION Object ID: 1, busbar_id: 0, value: 233.4587860107422 ,

ORIGINLINE Object ID: 1, busbar_id: 0, connected to substation: 1, flow_value: [4.16] ,

ORIGINLINE Object ID: 2, busbar_id: 0, connected to substation: 4, flow_value: [-1.27] ],



	1: [
	PRODUCTION Object ID: 2, busbar_id: 0, value: 40.0 ,

CONSUMPTION Object ID: 1, busbar_id: 0, value: 21.700000762939453 ,

ORIGINLINE Object ID: 3, busbar_id: 0, connected to substation: 2, flow_value: [2.48] ,

ORIGINLINE Object ID: 4, busbar_id: 0, connected to substation: 3, flow_value: [4.98] ,

ORIGINLINE Object ID: 5, busbar_id: 0, connected to substation: 4, flow_value: [-3.53] ,

EXTREMITYLINE Object ID: 1, busbar_id: 0, connected to substation: 0, flow_value: [4.16] ],



	2: [
	PRODUCTION Object ID: 3, busbar_id: 0, value: 0.0 ,

CONSUMPTION Object ID: 2, busbar_id: 0, value: 94.19999694824219 ,

EXTREMITYLINE Object ID: 2, busbar_id: 0, connected to substation: 3, flow_value: [-2.31] ,

EXTREMITYLINE Object ID: 3, busbar_id: 0, connected to substation: 1, flow_value: [2.48] ],



	3: [
	CONSUMPTION Object ID: 3, busbar_id: 0, value: 47.79999923706055 ,

EXTREMITYLINE Object ID: 4, busbar_id: 0, connected to substation: 4, flow_value: [35.49] ,

ORIGINLINE Object ID: 6, busbar_id: 0, connected to substation: 6, flow_value: [27.17] ,

ORIGINLINE Object ID: 7, busbar_id: 0, connected to substation: 8, flow_value: [15.38] ,

EXTREMITYLINE Object ID: 5, busbar_id: 0, connected to substation: 1, flow_value: [4.98] ,

ORIGINLINE Object ID: 8, busbar_id: 0, connected to substation: 2, flow_value: [-2.31] ],



	4: [
	CONSUMPTION Object ID: 4, busbar_id: 0, value: 7.599999904632568 ,

ORIGINLINE Object ID: 9, busbar_id: 0, connected to substation: 5, flow_value: [-40.77] ,

EXTREMITYLINE Object ID: 6, busbar_id: 0, connected to substation: 0, flow_value: [-1.27] ,

EXTREMITYLINE Object ID: 7, busbar_id: 0, connected to substation: 1, flow_value: [-3.53] ,

ORIGINLINE Object ID: 10, busbar_id: 0, connected to substation: 3, flow_value: [35.49] ],



	5: [
	PRODUCTION Object ID: 4, busbar_id: 0, value: 0.0 ,

CONSUMPTION Object ID: 5, busbar_id: 0, value: 11.199999809265137 ,

ORIGINLINE Object ID: 11, busbar_id: 0, connected to substation: 12, flow_value: [-12.76] ,

ORIGINLINE Object ID: 12, busbar_id: 0, connected to substation: 11, flow_value: [-2.99] ,

EXTREMITYLINE Object ID: 8, busbar_id: 0, connected to substation: 10, flow_value: [25.01] ,

EXTREMITYLINE Object ID: 9, busbar_id: 0, connected to substation: 4, flow_value: [-40.77] ],



	6: [
	EXTREMITYLINE Object ID: 10, busbar_id: 0, connected to substation: 7, flow_value: [0.0] ,

ORIGINLINE Object ID: 13, busbar_id: 0, connected to substation: 8, flow_value: [27.17] ,

EXTREMITYLINE Object ID: 11, busbar_id: 0, connected to substation: 3, flow_value: [27.17] ],



	7: [
	PRODUCTION Object ID: 5, busbar_id: 0, value: 0.0 ,

ORIGINLINE Object ID: 14, busbar_id: 0, connected to substation: 6, flow_value: [0.0] ],



	8: [
	CONSUMPTION Object ID: 6, busbar_id: 0, value: 29.5 ,

ORIGINLINE Object ID: 15, busbar_id: 0, connected to substation: 13, flow_value: [16.49] ,

ORIGINLINE Object ID: 16, busbar_id: 0, connected to substation: 9, flow_value: [26.06] ,

EXTREMITYLINE Object ID: 12, busbar_id: 0, connected to substation: 3, flow_value: [15.38] ,

EXTREMITYLINE Object ID: 13, busbar_id: 0, connected to substation: 6, flow_value: [27.17] ],



	9: [
	CONSUMPTION Object ID: 7, busbar_id: 0, value: 9.0 ,

ORIGINLINE Object ID: 17, busbar_id: 0, connected to substation: 10, flow_value: [25.79] ,

EXTREMITYLINE Object ID: 14, busbar_id: 0, connected to substation: 8, flow_value: [26.06] ],



	10: [
	CONSUMPTION Object ID: 8, busbar_id: 0, value: 3.5 ,

ORIGINLINE Object ID: 18, busbar_id: 0, connected to substation: 5, flow_value: [25.01] ,

EXTREMITYLINE Object ID: 15, busbar_id: 0, connected to substation: 9, flow_value: [25.79] ],



	11: [
	CONSUMPTION Object ID: 9, busbar_id: 0, value: 6.099999904632568 ,

EXTREMITYLINE Object ID: 16, busbar_id: 0, connected to substation: 12, flow_value: [2.96] ,

EXTREMITYLINE Object ID: 17, busbar_id: 0, connected to substation: 5, flow_value: [-2.99] ],



	12: [
	CONSUMPTION Object ID: 10, busbar_id: 0, value: 13.5 ,

EXTREMITYLINE Object ID: 18, busbar_id: 0, connected to substation: 13, flow_value: [15.6] ,

EXTREMITYLINE Object ID: 19, busbar_id: 0, connected to substation: 5, flow_value: [-12.76] ,

ORIGINLINE Object ID: 19, busbar_id: 0, connected to substation: 11, flow_value: [2.96] ],



	13: [
	CONSUMPTION Object ID: 11, busbar_id: 0, value: 14.899999618530273 ,

EXTREMITYLINE Object ID: 20, busbar_id: 0, connected to substation: 8, flow_value: [16.49] ,

ORIGINLINE Object ID: 20, busbar_id: 0, connected to substation: 12, flow_value: [15.6] ]









}










	substation_to_node_mapping


	
	internal_to_external_mapping
	A dict linking the substation ids from substations_elements (internal) to the observation substations (external)









[image: _images/internal_to_external_mapping_explanation_console.png]






	
	substation_in_cooldown
	List of substation that are in cooldown







	
	debug
	Boolean flag for debugging purposes











Outputs

The alphaDeesp object then provides a list : ranked_combinations

This is a list of dataframes with the following columns :


	
	score
	the score of the topology from 0(worst) to 4(best)







	
	topology
	An array of integers (bus_ids) showing the topology of a node







	
	node
	The node on which the topology was applied











Simulating AlphaDeesp suggestions

This ranked_combinations list is then used to simulate all topologies with the Simulation override :
expert_system_results, actions = sim.compute_new_network_changes(ranked_combinations)

You eventually know which selected topologies are indeed successful.



Last Note

AlphaDeesp substation and topology rankings could be improved to make the selection of actions always more relevant and efficient.
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